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The stress state in plates with circular holes made of orthotropic homogeneous material has no
singularities and it can be exactly determined. The numerical stress distribution calculation by
the finite element method will be compared with those obtained by the analytical equations
developed by several authors.
The goal of this work is to validate the finite element method, in conjunction with in-plane and
out of plane failure criteria, in order to calculate not only the stress distribution for orthotropic
plates with circular holes but also to determine their ultimate strength.
The tool used has been a user subroutine (UMAT) specially developed for this work that
implements the features of the commercial FE program (ABAQUS). The code performs an
implicit analysis of the stress-state with progressive damage modelling.
Finally, both of them, numerical and analytical method, will be checked with experimental tests
by means of strain gauges. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
It is important to point out the work performed by
Konish, Whitney, Nuismer, Gillespie, Lekhnitskii and
other authors who developed analytical expressions for
the calculation of stress distributions in plates with circu-
lar holes.

The results obtained with finite elements method will be
compared with those obtained from the referenced authors
and they will be correlated with the measurements from
strain gauges placed on real specimens subjected to the
same load and boundary conditions.

In relation with the ultimate strength, our study is sup-
ported by the work carried out by Chang [1–3] who pre-
sented three different in-plane failure modes and their
respective material degradations. The interlaminar fail-
ure mode will be added in order to determine its relative
importance.

In this work we will also determine the characteristic
dimension (ao) of the average stress criterion (A.S.C.)
developed by Whitney [9, 12], for our particular material.
Finally, a useful new entity called (design coefficient) is
getting out. It enables to know the tendency of strength
reduction in a plate with a centred hole, and so, it saves
time in further calculations.
∗Author to whom all correspondence should be addressed.

2. Analytical expressions
Lekhnitskii [7] developed an analytic model for or-
thotropic plates with centred circular holes. On the basis
of this model of Lekhnitskii, the stress profile at the edge
of the hole represented in Figs 1 and 2 is:

σϑ = P

(
Eϑ

Ex

)
{[− cos2 ϕ + (K + n) sin2 ϕ]

×K cos2 ϑ + [(1 + n) cos2 ϕ − K sin2ϕ]
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Figure 1 Orthotropic plate with circular hole (z axis view).

Figure 2 Orthotropic plate with circular hole (general view).

When the load is applied in the direction of the principal
orthotropic axis (x) (for example the axis coincident with
de orientation of the fibres in a unidirectional laminate),
the stresses at points (B) and (B1), (Figs 1 and 2) which are
located in the diameter perpendicular to the load direction,
will have the known form:

σϑ = P (1 + n) = P K ∞
t (4)

where (K ∞
t = 1+n) is the stress-concentration factor for

an infinite plate.
Gillespie in his article "Influence of finite width on

notched laminate strength predictions" [4] explains: "A
common method used extensively in the literature to re-
late experimental notched strength (σ N), for plates of fi-
nite width to the notched strength of plates of infinite
width is to simply multiply (σ N) by a correction factor
(Kt/K ∞

t )". Thus, the expression that quantifies the new
ultimate tensile strength taking account of the finite width
of the specimen will be:

σ∞
N = σN

(
Kt

K ∞
t

)
(5)

σ∞
N = Ultimate tensile strength for an infinite plate with

a circular hole, σN = Ultimate tensile strength for a finite
plate with a circular hole, K ∞

t = Stress-concentration fac-
tor for an infinite plate, Kt = Stress-concentration factor
for a finite plate

Following the Gillespie indications at the mentioned
article [4], it has been proposed that an isotropic expres-
sion for (Kt/K ∞

t ) can be used for orthotropic materials
as well,

Kt

K ∞
t

= 2 + (
1 − D

W

)3

3
(
1 − D

W

) (6)

where (see Fig. 3), R = Hole Radius, D = 2R = Hole di-
ameter W = Plate Width

Inherent to this procedure is the assumption that the
entire stress distribution (σ x(0,y)) in a finite plate within
the highly stressed region defined by (R ≤ y ≤ W/2) scales
with the parameter (Kt/K ∞

t ), then:

σx (0, y)

σ∞
x (0, y)

= Kt

K ∞
t

= constant (7)

where(σ∞
x (0, y)) is the normal stress distribution in an

infinite plate.
According to the studies performed by Konish and

Whitney [6], the approximated normal stress distribu-
tion for an infinite orthotropic plate with a central hole
of radius (R) subjected to traction load in the principal
direction (X) is for (y ≥ R) (Fig. 3):

σ∞
x (0, y) = σ∞

x
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Figure 3 Axes of reference.
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where(σ∞
x ) is the stress far away from the hole: (σ∞

x =
σ∞

x (L/2, y)).
For laminates with (W/D ≤ 4), (σx (0, y)/σ∞

x (0, y)) is a
decreasing function of (y), with the slope of the relation
being dependent on orthotropy and (W/D). Consequently,
the finite width correction factor is only valid at the hole
edge (y = R) and significant error accumulates as the dis-
tance from the hole boundary increases.

To improve the representation of stress profile adja-
cent to the hole where fracture initiates a non-dimensional
function (δ(y)) is introduced, so that the finite width stress
profile will be expressed in the following form:

σx (0, y)

σ∞
x (0, y)

= Kt

K ∞
t

(1 + δ(y)) (9)

The function (δ(y)) defined in Equation 9, quantifies the
relative divergence of the actual width stress profile, and
it can be approximated as:

δ(y) = −C(y − R)

(
Kt

K ∞
t

− 1

)
(10)

With the following boundary conditions:

(δ(y = R) = 0); (−1 ≤ δ(y > R) ≤ 0)

(C) is the slope, and it depends of the material. In his pa-
per "Influence of finite width on notched laminate strength
predictions" [4] Gillespie suggest taking a value of (C) ap-
proximately equal to (70 m−1). As first approximation, we
are going to keep this value for orthotropic materials. If
a further calculation by the finite element analysis shows
great discrepancies, the value of (C) can be changed to ob-
tain better approximations of the stress state. Otherwise,
this value keeps as (70 m−1).

3. Failure criteria
The failure criteria selected are:

(a) Average stress criterion (A.S.C.) for the analytical
calculations.

The A.S.C. was proposed by Nuismer and Whitney [9,
12]. It assumes that failure occurs when the average stress
value of (σ x) over some fixed distance (ao), ahead of the
notch first reaches the unnotched tensile strength of the
material; for the circular hole, failure occurs when:

1

ao

R+ao∫
R

[σx (0, y)]dy = σo (11)

This criterion has got an unknown parameter (ao), which
depends on the material, the laminate and the geometry
of the plate.

b) Progressive damage criteria for the Finite Element
Analysis.

They are the most appropriate to be use in the calcula-
tion through the finite element technique with sequential
progressive load.

There are different independent modes of failure. With
all of them we take account of the in-plane and out of

T AB L E I Degradation criteria with in-plane matrix cracking

(Ex)n+1 = Ex (Gxy)n = Gxy (νxy)n = νxy

(Ey)n+1 = d3(Ey)n (Gxz)n = Gxz (νxz)n = νxz

(Ez)n+1 = d3(Ez)n (Gyz)n+1 = d3(Gyz)n (νyz)n+1 = d3(νyz)n

T AB L E I I Degradation criteria with in-plane fiber-matrix shearing
failure

(Ex)n = Ex (Gxy)n+1 = dg(Gxy)n (νxy)n = νxy

(Ey)n+1 = dg
2(Ey)n (Gxz)n+1 = dg(Gxz)n (νxz)n = νxz

(Ez)n+1 = dg
2(Ez)n (Gyz)n+1 = dg

2(Gxz)n (νyz)n+1 = dg
2(νyz)n

T AB L E I I I Degradation criteria with in-plane fibre breakage

(Ex)n+1 = d(Ex)n (Gxy)n+1 = d(Gxy)n (νxy)n+1 = d(νxy)n

(Ey)n+1 = dg
2(Ey)n (Gxz)n+1 = d(Gxz)n (νxz)n+1 = d(νxz)n

(Ez)n+1 = dg
2(Ez)n (Gyz)n+1 = dg

2(Gyz)n (νyz)n+1 = dg
2(νyz)n
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T AB L E I V Degradation criteria with interlaminar failure

(Ex)n = Ex (Gxy)n = Gxy (νxy)n = νxy

(Ey)n = Ey (Gxy)n+1 = di(Gxz)n (νxz)n+1 = di(νxz)n

(Ez)n+1 = di(Ez)n (Gyz)n+1 = di(Gyz)n (νyz)n+1 = di(νyz)n

T AB L E V Stiffnes properties of a layer in the principal directions

Ex = 36150 Mpa Gxy = 4230 Mpa νxy = 0.26
Ey = 8560 Mpa Gxz = 4230 Mpa νxz = 0.26
Ez = 8560 Mpa Gyz = 2930 Mpa νyz = 0.5

T AB L E VI Ultimate strength of a layer in the principal directions

X = 440 Mpa Sxy = 39 Mpa
X′ = 130 Mpa Sxz = 39 Mpa
Y = 70 MPa Syz = 34 Mpa
Y′ = 80 Mpa
Z = 70 Mpa
Z′ = 80 Mpa

T AB L E VI I Geometrry of the specimens

1) Specimen 1: W/D = 12 W = 0.060 m
2) Specimen 2: W/D = 8 W = 0.040 m
3) Specimen 3: W/D = 4 W = 0.020 m
4) Specimen 4: W/D = 2 W = 0.010 m

plane failure. The Young’s moduli, Poisson’s ratios and
shear moduli have to be reduced according to the failure
modes which damage the plies in a similar manner than
the model from Nguyen [8].

(d), (dg), (d1), (d2) and (d3), are degradation parameters.
It will be explained how to use them in Tables I–IV. These
parameters keep constant when the failure occurs but the
properties affected decreases progressively in each step
of the sequential calculation from n = 1 to n = nf .

(n = 1) is the first step of the sequential calculation
when initial failure occurs

(n = nf) is the last step of the sequential calculation
when final failure occurs

The new elastic properties of the degraded material are
denoted by the (xx)n notation in Tables I–IV, whereas the
others without brackets are the properties of the intact
material.

b1) In-plane matrix cracking. The criterion has the
form:

(σy

Y

)2
+

(
τxy

Sc

)2

= e2
m (12)

where σ y = Transverse tensile stress in each layer,
τ xy = Shear stress in each layer, Y = In-plane trans-
verse normal strength in each layer, SC = In-plane shear
strength in each layer, (x, y, z) are the principal axes of the
unidirectional layer. (x) is the axis in the direction of the
fibre (Fig. 4).

Figure 4 Principal directions of the laminate.

If (em ≥ 1), it is assumed that matrix cracking occurs
and thus, the properties will be degraded according to the
following expressions:

Where (d3). is a degradation parameter. An example of
the value taken for (d3) will be showed later in this paper.

b2) In-plane fiber-matrix shearing. The criterion is ex-
pressed by:

(σx

X

)2
+

(
τxy

Sc

)2

= e2
f (13)

With
∣∣ σx

X

∣∣ <

∣∣∣ τxy

Sc

∣∣∣ and
∣∣ σx

X

∣∣ < 1, σ x = Longitudinal ten-

sile stress in each layer, X = In-plane longitudinal normal
strength in each layer

If (ef ≥ 1), fiber-matrix shearing occurs and thus, the
properties will be degraded according to the following
expressions:

Where (dg) is a degradation parameter. An example of
the value taken for (dg) will be showed later in this paper.

b3) In-plane fibre breakage. The criterion has the form:

(σx

X

)2
+

(
τxy

Sc

)2

= e2
f (14)

with
∣∣ σx

X

∣∣ ≥
∣∣∣ τxy

Sc

∣∣∣
If (ef ≥ 1), fiber-matrix shearing occurs and thus, the

properties will be degraded according to the following
expressions:

(d) and (dg) are degradation parameters. An example of
the values taken for (d) and (dg) will be showed later in
this paper.

b4) Interlaminar failure. The criterion has the form:

(σz

Z

)
+

(
T

S

)2

= ei (15)

with, T 2 = τ 2
xz + τ 2

yz, Where: σ z = Interlaminar normal
stress, τ xz = Interlaminar shear stress in the load direction,
τ yz = Interlaminar shear stress transverse to the load di-
rection, Z = Interlaminar normal strength (tensile or com-
pressive), S = Interlaminar shear strength.
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If (ei ≥ 1), it is assumed that matrix cracking occurs
and thus, the properties will be degraded according to the
following expressions:

(di = d1 when σz < 0) and (di = d2 when σz ≥ 0).

(d1) and (d2) are degradation parameters. An example
of the value taken for (di) will be showed later in this
paper.

As it is obvious, when the layer is not unidirectional,
the degradation of the material elastic properties must be
adapted to the kind of layer.

4. Stress distributions
The material used is:

Resin: epoxy (DOW-DER 335), Fibre: ARAMIDE
(Kevlar-49)

Fabrication Process: Vacuum bag moulding, Vf = 28%
Ply: Unidirectional ply thickness: 0.000285 m
Lay-up: [0]16 Total thickness: 0.00456 m.
These specimens were made in our laboratory, and ex-

perimentally tested in it following the classical methods to
obtain their mechanical properties. In consequence, these
material properties belong to our own material which was
obtained by vacuum bag moulding.

The mechanical properties of a layer in the principal
direction are given in Tables V and VI.

The geometry of the specimens is shown in Fig. 5. The
following dimensions are kept constant:

L = 0.250 m., l = 0.050 m., D = 0.005 m., t = 0.003 m.,
e = 0.00456 m., α = 30◦

In order to study the influence of the width, the ratios
in Table VII are selected.

The strain gauges were placed on all the specimens as
depicted in Fig. 6. The characteristics of the gauges are:

Length = 0.001m, Width = 0.0007mm.,
R = 120 ± 0.3 �, Gauge factor = 2.1

Figure 5 Specimen geometry.

Figure 6 Strain gauges disposition.

Figure 7 Mesh of the plate.

A quasi-static increasing traction load is applied in the
principal direction (x) as it is represented in Fig. 3, where
(σ∞

x ) is the stress far away from the hole:

(σ∞
x = σ∞

x (L/2, y)).

To avoid the analysis of the thermal stresses as a parameter
of study with different influence in each specimen, we
worked with the next premises; the temperature conditions
while the test are going to be kept constant for all of them
and the manufacturing of the specimens for testing was
done in similar ambient conditions.

Three repetitions by test were carried out.
As it was explained above, we are going to solve the

stress distribution by using the finite element method. We
selected the standard parabolic volumetric element with
20 nodes from the (ABAQUS) library. The kind of mesh
is shown in Fig. 7.

The Length of the elements decreases proportionally as
the element is closer to the hole edge.

We begin with 200 elements at the first step of the
convergence study and we increment 200 elements in each
of the next calculation. We are going to check a point on
the hole edge subjected to a load such that there is no
failure in any place of the specimen. In this situation the
behaviour of the material is elastic-linear. The results of
the convergence study are reflected in Fig. 8, where (σ C)
is stress obtained by the F.E.M. and (σ T) is the analytical
stress. As it can be realized, (σC/σT ) grows when the
number of elements increases from a minimum of 200
and has a tendency of stabilization with 800 elements or
more.

From the previous study, the number of degrees of free-
dom of the selected modelization is greater than 6000.
Taking advantage of the loads symmetry and geometry,
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Figure 8 Convergence study.

Figure 9 Correlation analytical (Gillespie)-numerical (F.E.M.). W/D = 2.

Figure 10 Correlation analytical (Gillespie)-numerical (F.E.M.). W/D = 4.

only 1/8 of the specimen was meshed which saved com-
puting time.

The normal stress (σ x) in the direction perpendicular
of the load at (x = 0) is plotted at Figs 9–12. The re-
sults obtained by both methods, analytical and numerical,
are compared in those graphics. It can be observed that
analytical and numerical stresses correspond very well
at the points with the highest stress gradients, so there
seems to be a good correlation between both methods of
calculation.

Figure 11 Correlation analytical (Gillespie)-numerical (F.E.M.). W/D = 8.

Figure 12 Correlation analytical (Gillespie)-numerical (F.E.M.).
W/D = 12.

Figure 13 Correlation numerical (F.E.M.)-experimental, W/D = 4.

The range of variation of the stresses experimentally
obtained with the gauges is plotted at the Figs 13 and 14.
As Table VIII shows, the data provided from the gauges
give average errors less than 12% with respect to the
numerically predicted stresses.

5. Ultimate strength
As it has been demonstrated, and taking into account
that the Gillespie’s method is correct, the finite element
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T AB L E VI I I Correlation F.E.M.-Experimental

σx (0, y)/σ∞
x (L/2, y)

Gauge (1) Gauge (2) Gauge (3)
W/D Ner rep y = 0.0035 m Average error (%) y = 0.005 m Average error (%) y = W/2-0.002 m Average error (%)

4 3 1.36 7.5 1.16 9.4 1.07 2.7
8 3 1.31 12.2 1.10 8.3 1.02 7.3
12 3 1.25 11.9 1.10 7.5 1.02 2.8

Figure 14 Correlation numerical (F.E.M.)-experimental, W/D = 8.

method developed before gives good results when no fail-
ure occurs. Our goal is now to obtain the ultimate failure
load using the FEM with non-linearities due to progressive
degradation of the material mechanical properties when
it fails.

The calculations were done with the implicit module of
the commercial code (ABAQUS). The load was applied
step by step from null to ultimate failure load. In each
step the program calculated the strains. Next, we used our

own subroutine (UMAT) for the stresses calculation and
to apply the different criteria on each element stress state.
When an element fails, its elastic properties are degraded
in all the next steps.

The selected initial values for the degradation parame-
ters are:

Fibre breakage: d = 0.05
Fibre-matrix shear: dg = 0.80
Interlaminar failure with compression stress: d1 = 0.70
Interlaminar failure with tensile stress: d2 = 0.10
Matrix cracking: d3 = 0.20
These initial values can be adjusted for each material

when the results obtained in the experimental test differ
considerably. As long as we have more tests with different
materials we can obtain a general data base.

Matrix cracking appears at the hole edge at 26◦ from
the load direction. The area damaged by shear stresses
increases, but the ultimate failure is due to the breakage
of the fibres subjected to tensile stress. In this material
there are no interlaminar failures.

The ultimate failure loads takes place when in the con-
sidered step of the implicit module of (ABAQUS) there
is no convergence and stops of calculations occur. The
results obtained are shown in Table IX.

Figure 15 σ x stress distribution, (W/D) = 4.
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T AB L E I X Ultimate load

σ∞
x ultimate (MPa)

W/D Numerical Experimental Average error (%) Kd

2 105 115 8.7 3.826
4 205 210 2.4 2.095
8 225 240 6.2 1.833
12 275 260 5.8 1.692

T AB L E X Characteristic length, stress concentration factor and design
coefficient

W/D ao (m) do (m) Kt Kt

2 0.000584 0.000248 5.8816 3.826
4 0.001625 0.000559 4.4688 2.095
8 0.002066 0.000669 4.2227 1.833
12 0.002540 0.000780 4.1822 1.692

Figure 16 Stress concentration factor (Kt) and design coefficient (Kd).

The coefficient (Kd), which we have called (design co-
efficient), quantifies the strength reduction of a plate with
a centred circular hole, with respect to the same intact
plate when it is subjected to traction load in the principal
direction (x).

The dependence of the design coefficient and the stress
concentration factor with the (W/D) ratio is represented
in Fig. 16. The results show that (Kt) and (Kd) have small
variations for infinite plates (W/D ≥ 12), but they have
large increases for (W/D<4).

Finally, the characteristic length of the A.S.C. (ao) given
in Table X, increases as the (W/D) ratio increase.

6. Conclusions
For the material and geometries of the specimen analysed,
the F.E.M. appears to be a good calculation method with

errors lower than 12% with respect to the experimental
results.

It is possible that some of the errors are due to the
difficulty in placing the gauges, thus it shall be convenient
to contrast the results with another experimental method
as Moire Technique.

The results obtained by both methods, analytical and
numerical agree quite well at the points with the highest
stress gradients, so there seems to be a good correlation
between both calculation methods.

For the material and geometries of the specimen anal-
ysed, the progressive damage criterion seems to be an ac-
ceptable criterion for the strength calculation when there
is stress concentration.

Finally, as the (design coefficient) quantifies the
strength reduction of the plate due to the existence of
a circular hole, the results obtained from the studied ma-
terial can be used. This simplify the calculation process of
orthotropic plates that have different (W/D) ratios without
the necessity to develop the complete analytical method
of calculation. The design coefficient is dependent on the
material and the geometry of the plate, thus it has to be
experimentally determined in order to obtain a data base
for all materials.
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